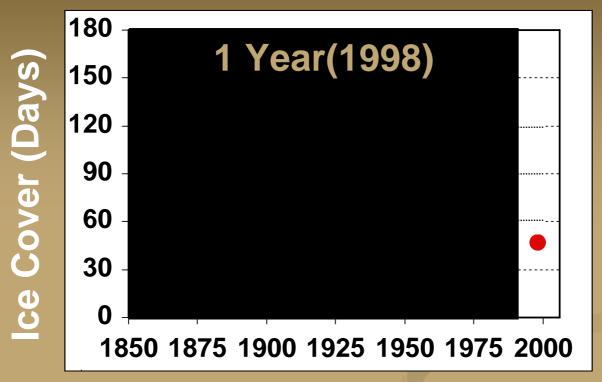

New Directions for U.S. LTER Research

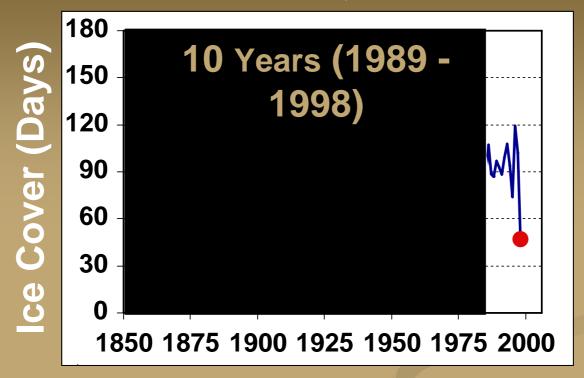
G. Philip Robertson

W.K. Kellogg Biological Station Michigan State University

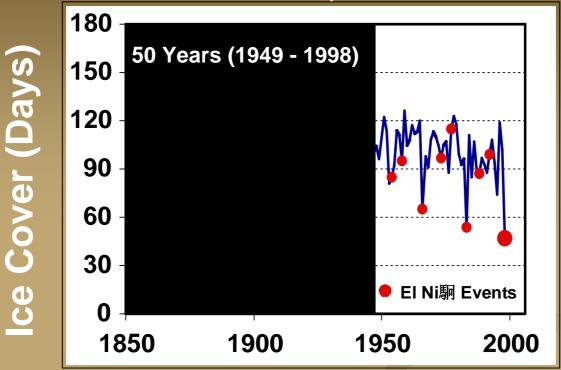
US LTER Sites

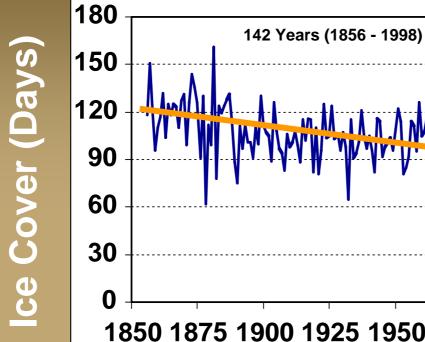

AND – H.J. Andrews Experimental Forest LTER, Oregon

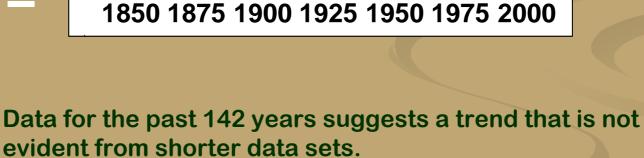
KNZ – Konza Prairie LTER, Kansas


NTL – North Temperate Lakes LTER, Wisconsin

CWT – Coweeta LTER, North Carolina

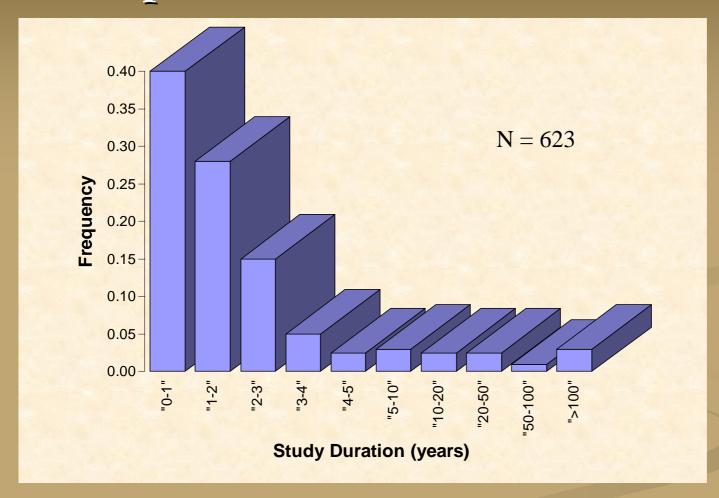

JRN – Jornada Basin LTER, New Mexico


Lake Mendota, WI is an example of how long-term research provides insights not evident from short term studies. The graph above shows how long the lake was covered with ice in 1998. A study taken over one year (short-term) does not reveal much.

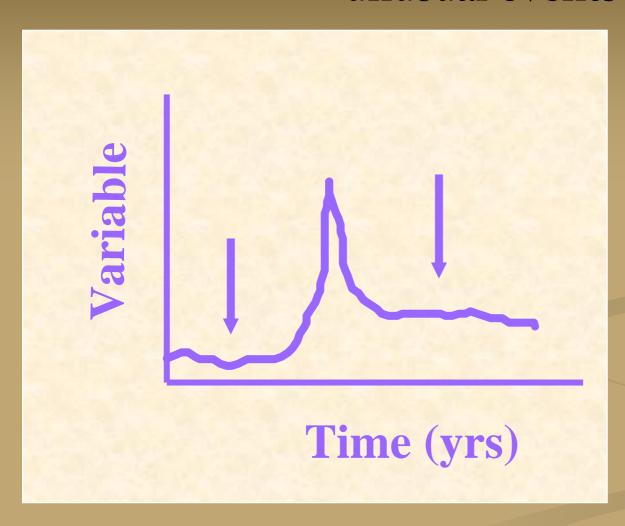


Research conducted over a decade reveals that duration of ice cover was unusually short in 1998.

Research over half a century reveals patterns in the lake's ice cover that coincide with global weather patterns and natural phenomena.



Long-term research is required to reveal:


- ■Slow processes or transients
- ■Episodic or infrequent events
- Trends
- Multi-factor responses
- Processes with major time lags

Duration of all observational and experimental studies

Eighty percent of studies in the ecological literature last less than three years

Only 10 percent of studies capture unusual events

Unusual events reset systems.
Short-term studies initiated before and after a rare event are viewing different system states.

LTER research covers time scales from months to centuries

YEARS	RESEARCH SCALES	PHYSICAL RESET EVENTS	BIOLOGICAL PHENOMENA
10^5 100 MILLENNIA 10^4 10 MILLENNIA	PALEO ECOLOGY &	• Continetal Glacition	 Evolution of Species Bog Succession
10 ⁴ 10 MILLENNIA 10 ³ MILLENNIUM	LIMNOLOGY	Climate Change	 Forest Community Migration Species Invasion Forest Succession
10 ² CENTURY 10 ¹ DECADE	LTER	 Forest Fires CO₂ Climate Warming Sun Spot Cycle El Nino 	 Cultural Eutrophication Hare Population Prairie Population
10 ⁰ YEAR 10 ⁻¹ MONTH		Prairie FiresLake TurnoverOcean Upwelling	Annual PlantsPlanktonSuccession
10 ⁻² DAY	MOST ECOLOGY	StormsDiel Light CycleTides	Algal bloomDiel Migration
10 ⁻³ HOUR			

The time scales addressed by the LTER Program fall outside the range of those typically addressed in other ecological research programs

Current US LTER Sites

AND – H.J. Andrews Experimental Forest LTER, Oregon

ARC – Arctic Tundra LTER, Alaska

BES – Baltimore Ecosystem Study LTER, Maryland

BNZ – Bonanza Creek Experimental Forest LTER, Alaska

CAP – Central Arizona-Phoenix LTER, Arizona

CCE – California Current Ecosystem LTER, California

CDR – Cedar Creek Natural History Area LTER, Minnesota

CWT – Coweeta LTER, North Carolina

FCE – Florida Coastal Everglades LTER, Florida

GCE – Georgia Coastal Ecosystem LTER, Georgia

HBR – Hubbard Brook LTER, New Hampshire

HFR – Harvard Forest LTER, Massachusetts

JRN – Jornada Basin LTER, New Mexico

LNO - LTER Network Office, New Mexico

KBS – Kellogg Biological Station LTER, Michigan

KNZ – Konza Prairie LTER, Kansas

LUQ – Luquillo Experimental Forest LTER, Puerto Rico

MCM – McMurdo Dry Valleys LTER, Antarctica

MCR – Moorea Coral Reef LTER, French Polynesia

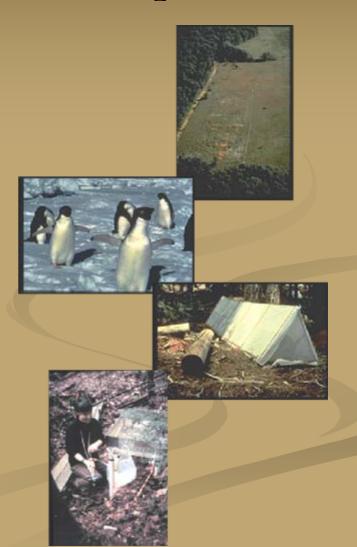
NWT – Niwot Ridge LTER, Colorado

NTL – North Temperate Lakes LTER, Wisconsin

PAL – Palmer Station LTER, Antarctica

PIE – Plum Island Ecosystem LTER, Massachusetts

SBC – Santa Barbara Coastal Ecosystem LTER, California


SEV – Sevilleta LTER, New Mexico

SGS – Shortgrass Steppe LTER,

VCR – Virginia Coast Reserve LTER, Virginia

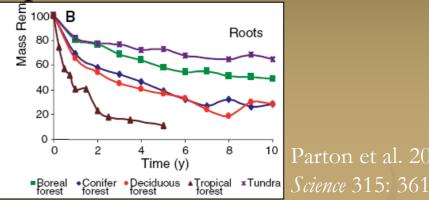
LTER sites share a common commitment to long-term research on core topics:

- Pattern and control of primary production
- Spatial and temporal distribution of populations selected to represent trophic structure
- Pattern and control of organic matter accumulation in surface layers and sediments
- Patterns and movements of inorganic inputs through soils ground- and surface waters
- Patterns and frequency of disturbance

■ Site science volumes

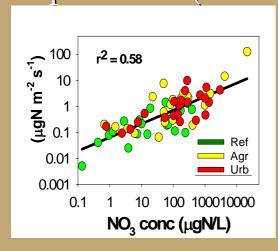
ra F. Haenneke lam H. Schlesinger

John C. Trisco, Edito

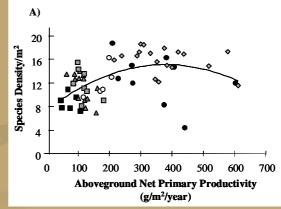

Principles and Standards for Measuring Primary Production

Standard Soil Methor for Long-T Ecological Research

G. Pidip Rotertans David C. Celeman Carriere S. Bienbee Phälp Soften


Recent Cross-Site Syntheses

 Long-term Intersite Decomposition Experiment (LIDET)


Parton et al. 2006

 Lotic Intersite Nitrogen Experiment (LINX)

Peterson et al. 2001 Science 292: 86

Productivity Diversity Traits Network (PDNet)

Suding et al. 2005 PNAS 102: 4387

THE IMPORTANCE OF CROSS-SITE SYNTHESIS

"The power of the network approach of the LTER program rests in the ability to compare similar processes (e.g., primary production or decomposition of organic matter) under different ecological conditions. As a result, LTER scientists should be able to understand how fundamental ecological processes operate at different rates and in different ways under different environmental conditions." (US LTER 10-y Review, 1993)

LONG-TERM ECOLOGICAL RESEARCH NETWORK

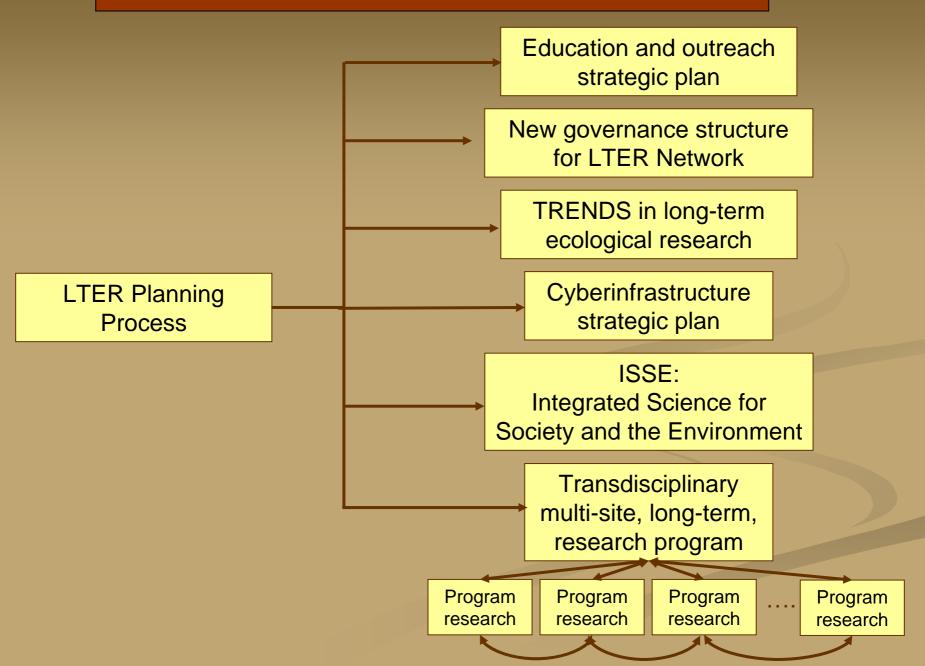
LTER CORE AREAS

- Net Primary Production
- Organic matter cycling
- Nutrient cycling
- Population dynamics
- Disturbance

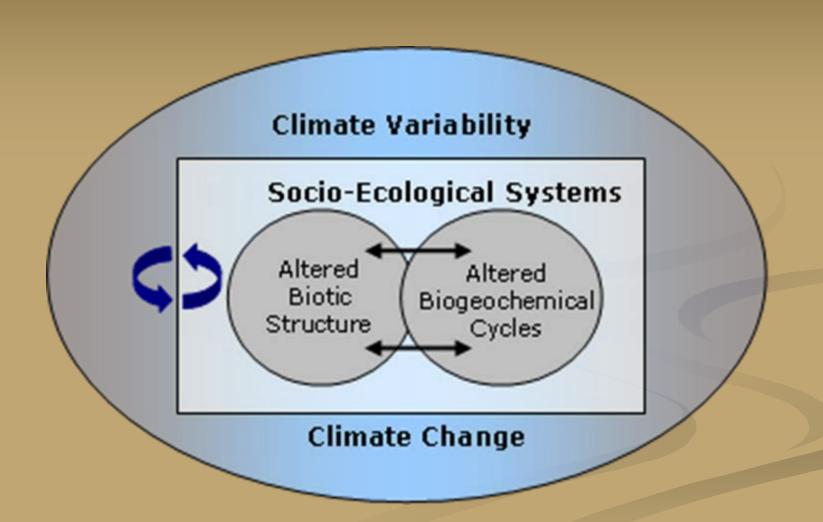
CHARACTERISTICS:

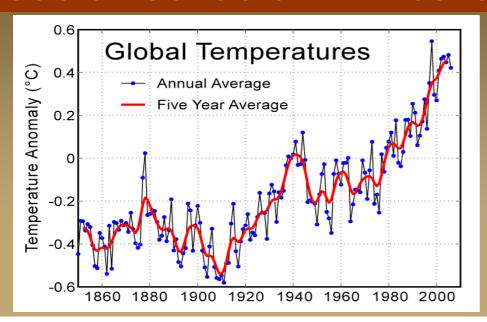
- •Long-term
- -Ecological
- •Site-based

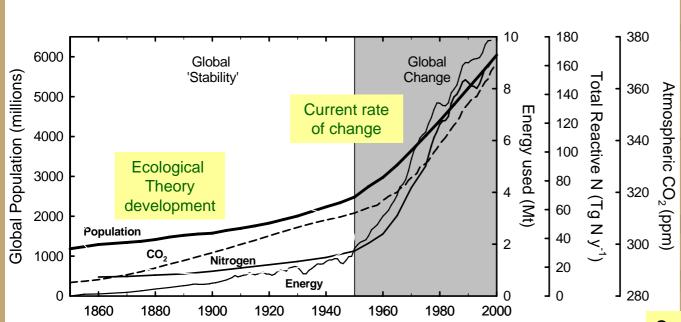



TOWARD INTEGRATION AND SYNTHESIS: GOALS OF THE LTER PLANNING PROCESS

A new LTER science agenda that will take LTER science to a higher level of research collaboration, synthesis, and integration.

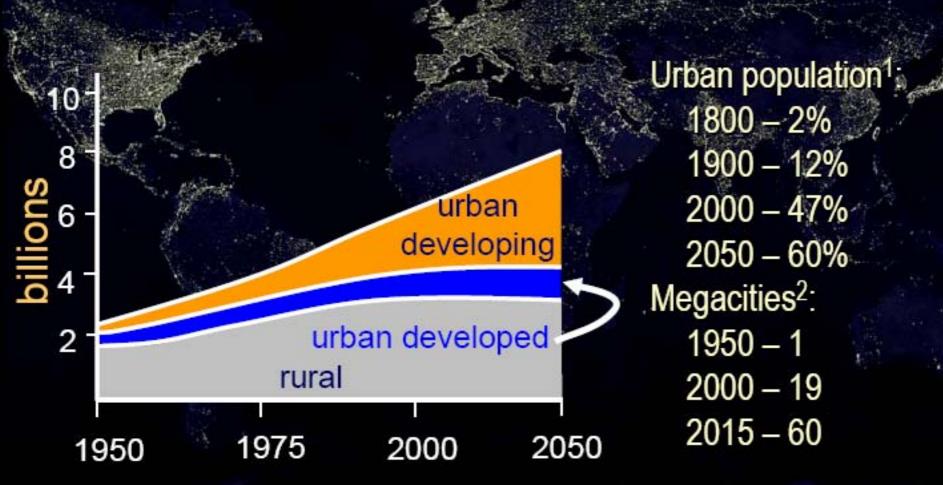

- •Objective 1: establish activities that will lead to multi-site, highly collaborative, integrated research that explicitly includes synthesis components coupled with novel training opportunities in graduate and undergraduate education.
- •Objective 2: evaluate LTER Network governance structure and further stimulate the culture of collaboration within the LTER Network.
- •Objective 3: envision and develop education and training activities that will infuse LTER science into the K-12 science curriculum.


OUTCOMES OF THE PLANNING PROCESS



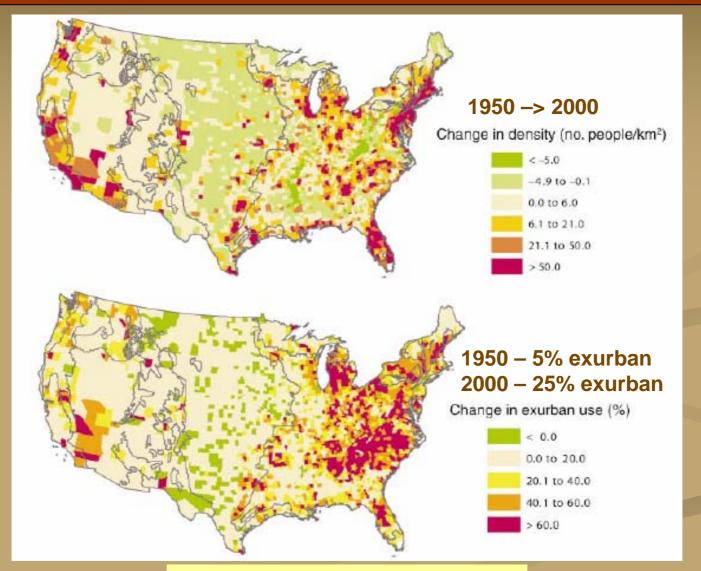
INTEGRATED SCIENCE FOR SOCIETY AND THE ENVIRONMENT

SOCIO-ECOLOGICAL PRESSES



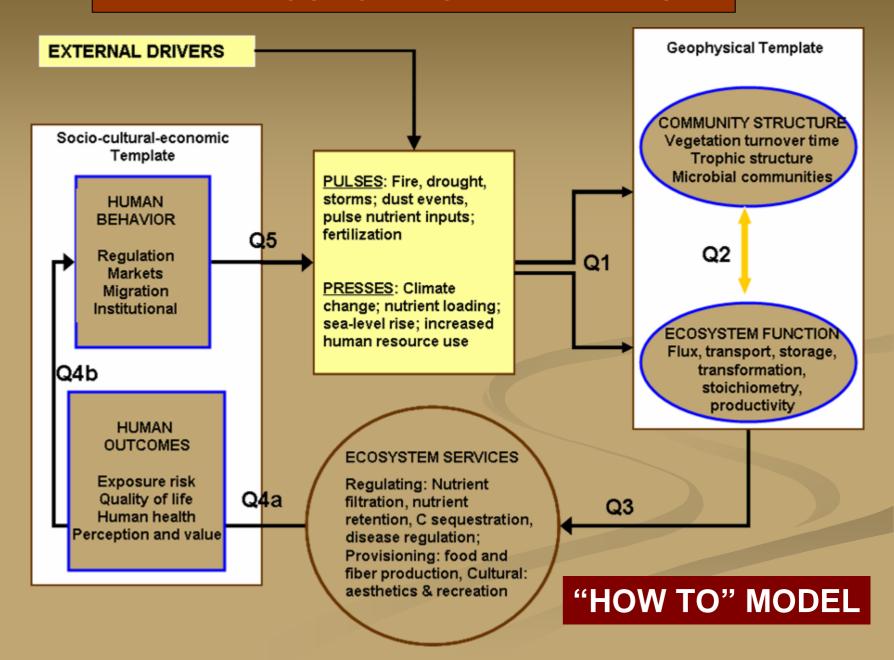
Year

Smith, Knapp & Collins, in review

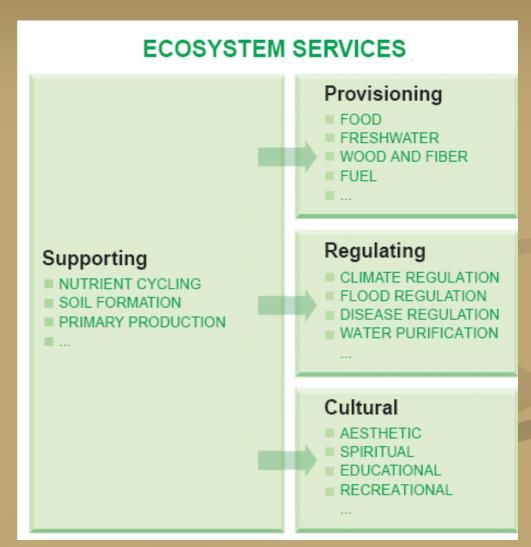

The problem of urbanization: the future

Source: World Resources Institute 1996

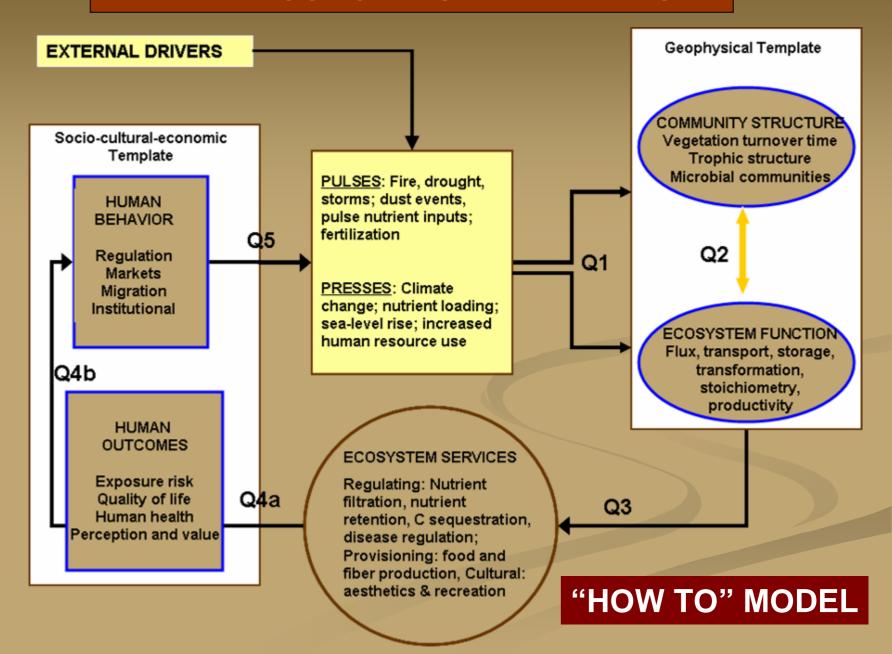
Sources: ¹ Cohen 2003 Science ² IHDP Report 2005


POPULATION EFFECTS VARY SPATIALLY Requires a broad-scale comparative approach

Brown et al. 2005 Ecological Applications

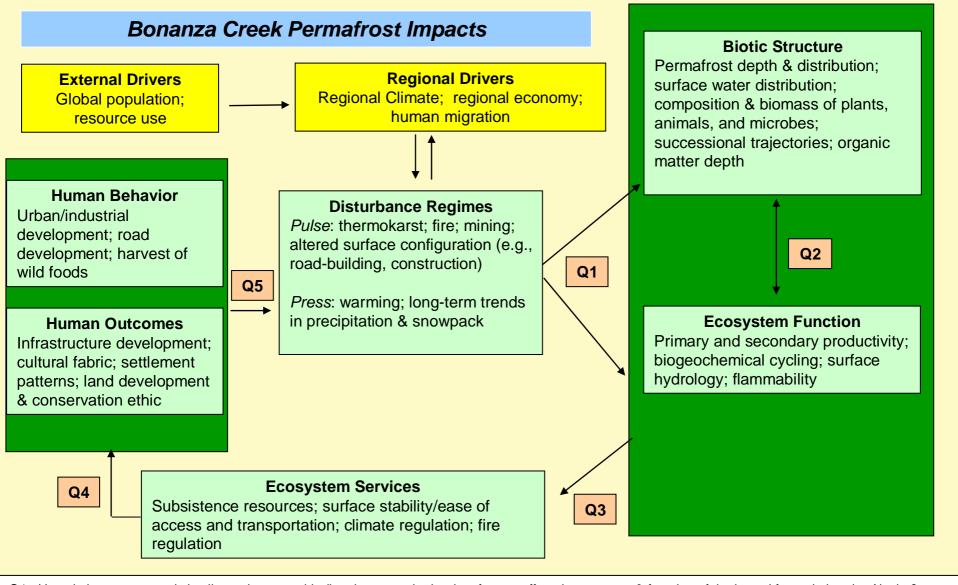


ITERATIVE CONCEPTUAL FRAMEWORK



Ecosystem Services The benefits people obtain from ecosystems

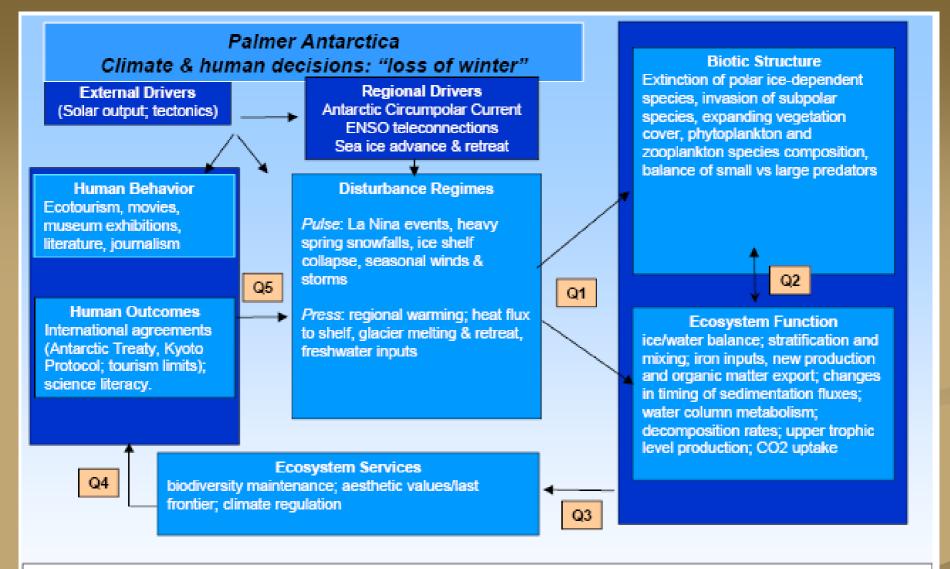
Millennium Ecosystem
Assessment:



ITERATIVE CONCEPTUAL FRAMEWORK

FRAMEWORK QUESTIONS

- Q1: How do long-term press and pulse drivers interact to alter ecosystem structure and function?
- Q2: How can biotic structure be both a <u>cause and</u> <u>consequence</u> of ecological fluxes of energy & matter?
- Q3: How do altered ecosystem dynamics affect ecosystem services?
- Q4: How do changes in vital ecosystem services feed back to alter human behavior?
- Q5: Which human actions influence the frequency, magnitude, or form of press and pulse disturbance regimes across ecosystems, and how do these change across ecosystem types?



- Q1. How do long-term trends in climate interact with disturbance to the land surface to affect the structure & function of the boreal forest in interior Alaska?
- Q2. How are feedbacks between community structure and ecosystem function affected by changes in permafrost?
- Q3. How do ecological changes associated with warming permafrost affect subsistence resource use, the ease of accessing landscapes, and flammability/fire regulation?
- Q4. How will the human population respond to landscape changes associated with warming permafrost?
- Q5. How will human actions/decisions affect the dynamics of permafrost thaw in interior Alaska?

Questions Q4-5: Bonanza Creek, Alaska

■ Q4. How will the human population respond to landscape changes associated with warming permafrost?

■ **Q5.** How will human actions and decisions affect the dynamics of permafrost thaw in interior Alaska?

- Q1: How do long-term climate warming and short term weather, sea ice and oceanographic events influence life history adaptations of ice-dependent and independent species and lower trophic level dynamics?
- Q2: How are feedback interactions between upper trophic level predators (top-down controls) and biogeochemical functions (bottom-up) affected by changing climate and sea ice over the long and short term?
- Q3: How will loss of typical polar species (e.g., penguins) affect tourism and cultural values of Antarctica?
- Q4: How does the human population (tourists, students, moviegoers, policy makers) respond to warming-related changes in the Antarctic environment?
- Q5: How do human decisions and actions (more or less tour business; Treaty structures, pressure to control carbon emissions) affect pace and results of climate change?

Questions Q4-5: Palmer Antarctica

■ **Q4.** How does the human population (tourists, students, moviegoers, policymakers) respond to warming-related changes in the Antarctic?

■ **Q5.** How do human decisions and actions (more or fewer tourists, treaty structures, pressure to control carbon emissions) affect the pace and results of climate change.

Working Lands Socio-Ecological Systems: KBS, SGS, AND, etc.

Q5 →

Global National Community

Individual

Human Behavior

Land use; resource use (water, soil, energy, agrichemicals); recreation; species introductions; price supports, trade tariffs; regulations, stewardship incentives

Human Outcomes

Commodity prices, land value, farm size, community vitality; resource availability; health & wellness; quality of life, access to services; economic security

Global drivers: climate, economy

Regional drivers: soils, climate, economy

Disturbance

Pulses: drought; storms; fire; management (fertilization; irrigation; weed, insect, and pathogen controls); pest outbreaks.

Presses: climate change, elevated CO₂, nutrient inputs; land use change; erosion; ground water depletion; economic change

Q1

Region

Landscape

Ecosystem

Ecosystem Structure

Abundance and distribution of primary producers and consumers: crops, weeds, pests, livestock, microbes, wildlife

Q2

Ecosystem Function

Primary production; nutrient cycling; herbivory, predation, decomposition; evapotranspiration, water use; gene flow.

Ecosystem Services

Market products (food, fiber, fuel); pest and disease suppression; climate stabilization, carbon storage, greenhouse gas mitigation; pollination; wildlife habitat; flood control / hydrological security; income (financial security); recreation opportunities; quality air & water.

Q4

Q3

Questions Q4-5

- Q4. How do humans perceive changes in ecosystem services, and how do these perceptions influence market and policy behavior, rural migration, resource availability, personal and community health and well-being, environmental attitudes, and economic growth and security?
- Q5. How do social structural, institutional, and economic factors affect human decisions about ecosystem management (e.g. grazing pressure, pesticide and fertilizer use).

KBS: The Row Crop Ecosystem

Biophysical Environment

Climate & Weather Geomorphology

Socio-economic Environment

Market Prices
Infrastructure
Ethics and Values

Watershed / Landscape

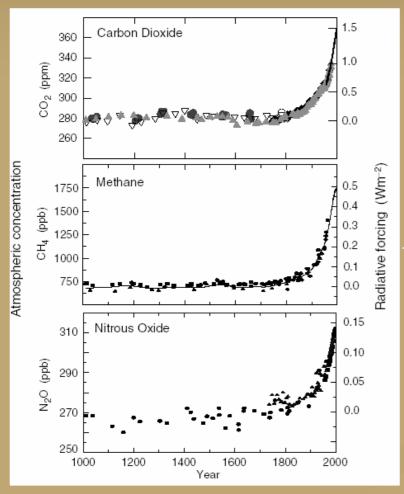
Ecosystem

Ecological Functions

- Biogeochemical Processes
- Energy Capture and Flow
- Hydrological Dynamics

Ecological Structure

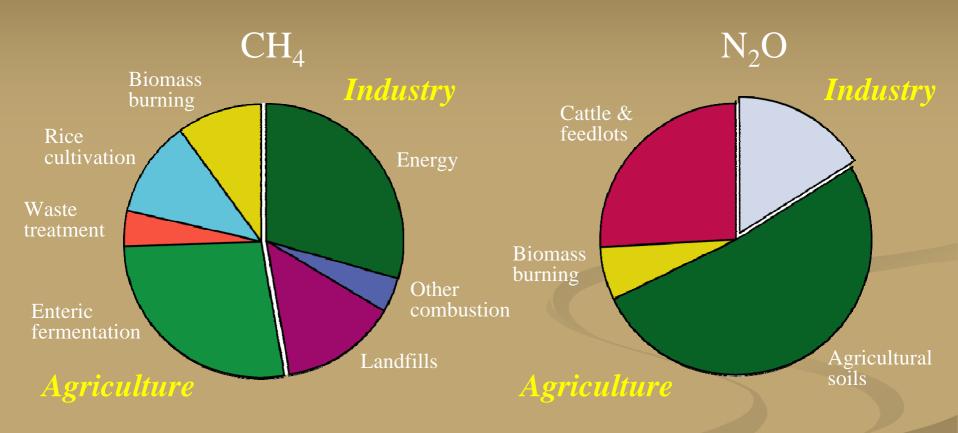
- Organisms and their Adaptations
- Population and Community Assemblages
- Habitat and Landscape Structure


Ecosystem Goods & Services

Food and Fiber Clean Water, Air Biodiversity / Wildlife Habitat CO₂ Stabilization

Profitability
Social Amenities

Agricultural Systems as Greenhouse Gas Mitigators


Atmospheric Concentrations of the Biogenic Greenhouse Gases (CO₂, Methane, and Nitrous Oxide) from 1000 A.D.

	Atmospheric Lifetime (yr)	Global Warming Potential
CO ₂ Methane	variable 12	1 23
Nitrous Oxide	114	296

From IPCC (2001)

Anthropic Sources of Methane and Nitrous Oxide Globally

Total Impact 2.0 Pg C_{equiv}

1.2 Pg C_{equiv}

(compare to fossil fuel CO_2 loading = 3.3 PgC per year)

Major Potential Sources of Global Warming Impact in Field Crop Ecosystems

- Soil carbon change
- Fuel use
- Nitrogen fertilizer
- Lime (carbonate) inputs
- N₂O flux
- CH₄ flux (oxidation & emission)

KBS LTER Site

Ecosystem Type

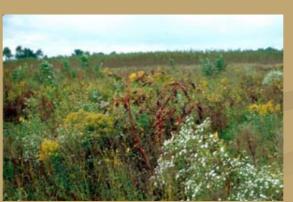
Management Intensity

Annual Crops (Corn - Soybean - Wheat) Conventional tillage

No-till

Low-input with legume cover Organic with legume cover

Perennial Crops
Alfalfa
Poplar trees


Successional Communities
Early successional old field
Mid successional old field
Late successional forest

High

Low

Full Cost Accounting: GWP Impact of Field Crop Activities

	Soil-C N-	Fert	Lime	Fuel	N_2O	CH_4	Net		
	$g CO_2$ -equiv / m^2 / y								
Annual Crops									
Conventional tillage	0	27	23	16	52	-4	114		

Soil carbon is at equilibrium (no annual change)

N₂O is largest source of GWP impact

Full Cost Accounting: GWP Impact of Field Crop Activities

	Soil-C N-Fert		Lime	Fuel	N_2O	CH_4	Net
	g CO ₂ -equiv / m² / y						
Annual Crops							
Conventional tillage	Û	27	23	16	<u>52</u>	-4	114
No-Till	<u>-110</u>	27	34	12	56	-5	14

No-till soil carbon gain provides substantial mitigation

Importance of N₂O does not change with no-till

Full Cost Accounting: GWP Impact of Field Crop Activities

	Soil-C	N-Fert	Lime	F'uel	N_2O	CH_4	Net
	g CO ₂ -equiv / m ² / y						
Annual Crops							
Conventional tillage	Û	27	23	16	5 2	-4	114
No-Till	- <u>110</u>	27	34	12	56	-5	14
Organic with cover	<u> -29</u>	0	0	19	56	-5	41

Some C gain with organic management

No N₂O change with organic management

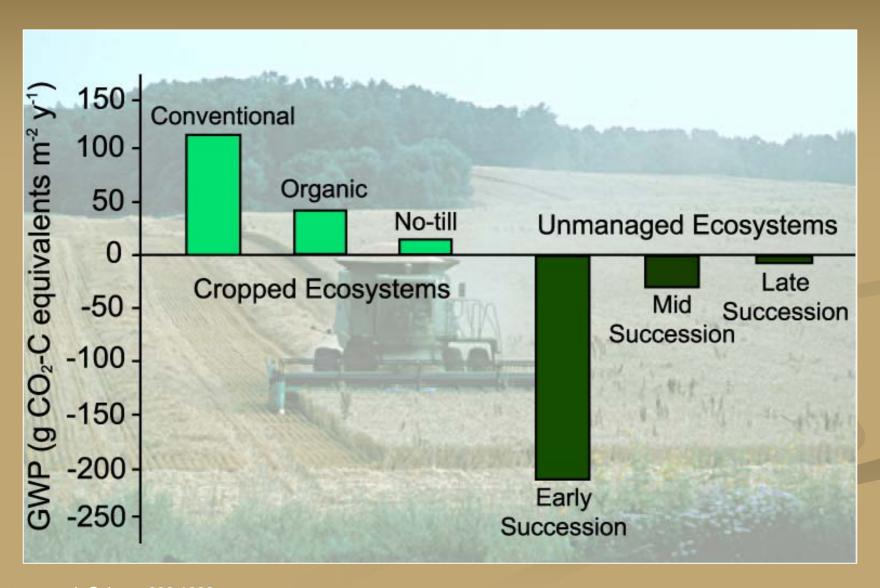
Some other sources of impact drop out

Full Cost Accounting: GWP Impact of Field Crop Activities

	Soil-C N-Fert		Lime	Fuel	N_2O	CH_4	Net
			g CO) ₂ -equiv /	m^2/y		
Annual Crops							
Conventional tillage	Û	27	23	16	<u>52</u>	-4	114
No-till	- <u>110</u>	27	34	<u>12</u>	56	- 5	14
Organic with cover	<u> -29</u>	0	0	<u>1</u> 9	56	-5	41
Perennial Crops							
Alfalfa	- <u>161</u>	0	80	8	5 9	-6	-20
Poplar trees	_ <u>-117</u>	5	0	2	10	-5	-105
					7		

Substantial C gain with perennial crops, especially legume

No N₂O change with legume; substantial change with poplar


Full Cost Accounting: GWP Impact of Field Crop Activities

	Soil-C N-Fert		Lime	Fuel	N ₂ O	CH ₄	Net
			g CO) ₂ -equiv / 1	m^2/y		
Annual Crops							
Conventional tillage	0	27	23	16	5 2	_ <u>_</u> <u>_</u>	114
No-till	- <u>11(</u>)	27	34	12	56	-5	14
Organic with cover	<u>-29</u>	0	0	19	56	-5	41
Perennial Crops							
Alfalfa	- <u>161</u>	0	80	8	59	-6	-20
Poplar trees	- <u>11</u> 7	5	0	2	<u>10</u>	-5	-105
-							
Successional Communiti	ies (CRP)						
Early successional	- <mark>220</mark>	0	0	0	<u>1</u> 5	-6	-211
Mid-successional	-32	0	0	0	16	-15	-31
Late successional fore	st <mark>()</mark>	0	0	0	<u>21</u>	-25	-4
	1					1	
Huge C gain in	Huge C gain in natural			N / - 11-			
			Methane oxidation				

Huge C gain in natural system early, no gain later (at equilibrium)

Methane oxidation significant only in unmanaged systems

Net Global Warming Impact of Managed and Unmanaged Ecosystems at KBS

Q5 →

Global National Community Individual

Human Behavior

Land use; resource use (water, soil, energy, agrichemicals); recreation; species introductions; price supports, trade tariffs; regulations, stewardship incentives

Human Outcomes

Commodity prices, land value, farm size, community vitality; resource availability; health & wellness; quality of life, access to services; economic security

Global drivers: climate, economy

Regional drivers: soils, climate economy

Disturbance

Pulses: drought; storms; fire; management (fertilization; irrigation; weed, insect, and pathogen controls); pest outbreaks.

Presses climate change, elevated CO₂, nutr ent inputs; land use change; crosion; ground v ater depletion; economic change

Q1

Region

Landscape

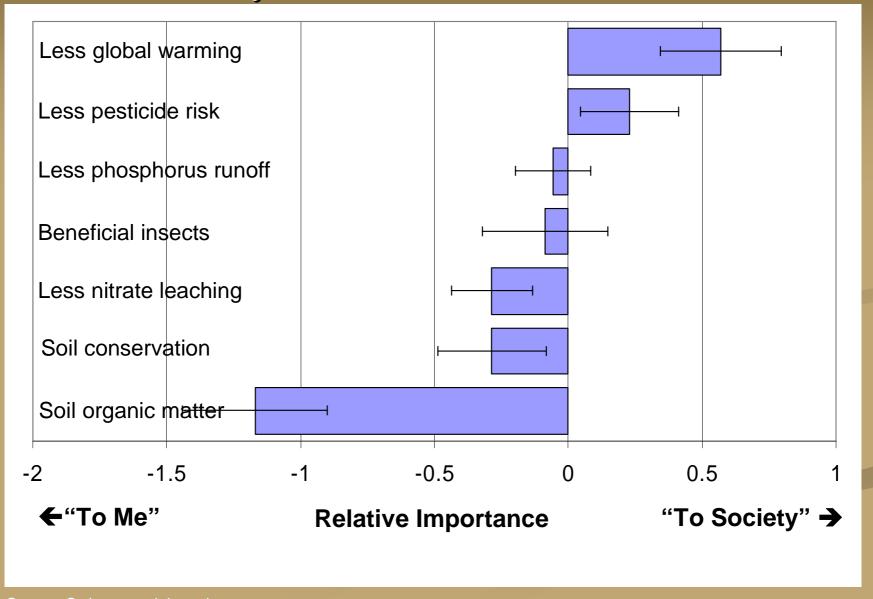
Ecosystem

Ecosystem Structure

Abundance and distribution of primary producers and consumers: crops, weeds, pests, livestock, microbes, wildlife

Q2

Ecosystem Function


Primary production; nutrient cycling; herbivory, predation, decomposition; evapotranspiration, water use; gene flow.

Ecosystem Services

Market products (food, fiber, fuel); pest and disease suppression; climate stabilization, **carbon storage, greenhouse gas mitigation**; pollination; wildlife habitat; flood control / hydrological security; income (financial security); recreation opportunities; quality air & water.

Q3

Michigan farmers' perceptions of the value of different ecosystem services :

Questions Q4-5

■ Q4. How do changes in the valuation of services influence human outcomes such as market and policy behavior, rural demographics, resource availability, personal and community health and well-being, environmental attitudes, and economic growth, wealth, and security?

■ **Q5.** How do social structural, institutional, and economic factors affect human decisions about ecosystem management.

